Extensions 1→N→G→Q→1 with N=C32 and Q=Dic9

Direct product G=N×Q with N=C32 and Q=Dic9
dρLabelID
C32×Dic9108C3^2xDic9324,90

Semidirect products G=N:Q with N=C32 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
C321Dic9 = C32⋊Dic9φ: Dic9/C6S3 ⊆ Aut C32108C3^2:1Dic9324,8
C322Dic9 = C322Dic9φ: Dic9/C6S3 ⊆ Aut C32366C3^2:2Dic9324,20
C323Dic9 = C323Dic9φ: Dic9/C9C4 ⊆ Aut C32364C3^2:3Dic9324,112
C324Dic9 = C3×C9⋊Dic3φ: Dic9/C18C2 ⊆ Aut C32108C3^2:4Dic9324,96
C325Dic9 = C325Dic9φ: Dic9/C18C2 ⊆ Aut C32324C3^2:5Dic9324,103

Non-split extensions G=N.Q with N=C32 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
C32.Dic9 = C27⋊C12φ: Dic9/C6S3 ⊆ Aut C321086-C3^2.Dic9324,12
C32.2Dic9 = C3×Dic27φ: Dic9/C18C2 ⊆ Aut C321082C3^2.2Dic9324,10
C32.3Dic9 = C27⋊Dic3φ: Dic9/C18C2 ⊆ Aut C32324C3^2.3Dic9324,21

׿
×
𝔽